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A new method of resolving overlapping electronic absorp-
tion bands is described. The method operates through
linearizing Gaussian band shapes through derivation of d log
¢/dv, where ¢ is the absorption band profile absorbance at
wavelength v. The simple, digital, method provides informa-
tion of individual component peak positions, band heights
(intensities), and widths. The limits of applicability for the
method are given and extensions to include a visual display
presentation are described. Results obtained using the
method described are more consistent and accurate than
results obtained using an analog curve resolver.

We are concerned with the problem of éstimating the po-
sition, height, and width of absorption bands in experimen-
tally obtained electronic absorption spectra. Various math-
ematical methods have been proposed for estimating peak
parameters, but each method has its own advantages and
disadvantages and no single procedure seems wholly ade-
quate.

The two main types of methods are those which differen-
tiate the spectra and those which rely on a least squares fit-
ting procedure. The former methods include those de-
scribed by Butler and Hopkins(I, 2) and by Morrey (3),
while the latter methods are exemplified in the work of
Tunnicliff and Wadsworth (4), Savitsky and Golay (5), and
Schwartz (6). In these papers, the peak forms are usually
assumed to be Gaussian, Lorentzian, or Student-T type en-
velopes. Siano and Metzler (7) have proposed a least-
squares method based on a log-normal distribution.

The differentiation method is convenient but encounters
difficulty if the order of differentiation is high, generally of
second or fourth order, and if the spectrum includes noise.
The least squares method is capable of great precision but
usually depends upon initial estimates of the number of
peaks and their parameters. A du Pont Curve Resolver is
often necessary for preliminary analysis to obtain the ini-
tial peak parameters.

All the methods described require large digital comput-
ers for their application and, in most cases, the programs
are written for equally-spaced data.
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THE METHOD

A spectral-resolution method is described that has the
following properties: it assumes that the absorption peaks
are Gaussian shaped as a function of wavenumber, »; it uses
data taken at equal intervals in wavelengths, A; it permits
filtering of the data to reduce noise without significant dis-
tortion; it provides reliable estimates of the peak positions,
heights, and widths together with a criterion of accuracy;
and it is not excessively long or complicated and is thus
suitable for small computers, such as a Honeywell DDP 516
(8K core). It is assumed that the wavelength is perfectly
known and the signal/noise ratio in absorbance is at least
200.

The method uses both least-squares fitting procedures
and differentiation, and is probably closest in outlook to
that of «Tunnicliff and Wadsworth (4). The fundamental
concept arises from the following considerations:

Suppose that the wavelength spectrum, ¢(v), consists of
a lone Gaussian peak centered at » = A, with height ¢ and
width w, related to the standard deviation S by

w = 2S8(2 In 2)1/? (1)
Then,

P(v) = 68_”2(11_}4)2 (2)
and the quantity y(»), defined by;

P(v) = d(~In ¢)/dv (3)
satisfies

P(v) = (v — A)/S? (4)

Hence, in a region where the wavenumber spectrum con-
sists of a single Gaussian peak, the quantity (») is linear in
» with Slope = S~2 > 0 and Y(0) = A. When more than one
peak is present in a spectrum, this will be true only in the
regions where one peak dominates all of the other peaks.

Conceptually, the method proceeds as follows. The spec-
tral data are submitted to the transformation Equation 3,
the transformed data are plotted, and straight portions
with positive slopes are sought. Each of these straight por-
tions denotes a region where one peak dominates all the
other peaks. Assuming that one such region can be found,
the values of S and A are estimated from the plot and ¢ is
estimated by using Equation 2,

¢ = pl)e ) (5)

ANALYTICAL CHEMISTRY. VOL. 46. NO. 12, OCTOBER 1974 « 1785

W4




With the parameters for that peak available, it is now pos-
sible to subtract it from the overall absorption envelope
and then repeat the process for the next peak. In this way,
the peaks are subtracted sequentially until they are all re-
moved. : )

This procedure is quite straightforward to carry out
when the data consist of spectral ordinates at equal incre-
ments in wavenumber y. Normally one is concerned with
the case where the spectral ordinates are available in equal
increments of wavelength A and, therefore, unequal incre-
ments in ». The main problems in practical implementation
are then: (i) to design a numerical differentiation procedure
for Equation 3 that does not distort the peak shapes too
much, and is also not excessively affected by the noise in
the spectrum, and (ii) to develop a procedure for estimat-
ing A and S from the plot Y(v). Sometimes this can be done
by simple graphical means, but it is desirable also to have
an analytical method.

In treating problem (1) above, we shall adopt the criteri-
on that our numerical process should be such as to mini-
mize the distortion in a lone Gaussian peak. Naturally, this
means that the regions where more than one peak contrib-
utes to the spectrum will be slightly distorted. This is not
too serious a problem, however, because one can calculate
peak parameters only from regions where one peak domi-
nates.

If we define

x() = o(v) (6)
and use the relations
A= v hdydy = vt = )P (7)
we obtain,
P(v) = Ad(In x)/dr (8)
= d(3®>In x)/dx — 2x In y (9)

If ¢t is the constant wavelength increment between read-
ings, we shall use the numerical differentiation formula,

dZIn y)/dx = 1/@{0 + )* In x(0 + ) —
(= %Iy - 0L (10)

This formula is usually only an approximation, but, when
applied to a lone Gaussian peak, it is exact because it is
known to be exact for second degree polynomials, and A? In
x is a second degree polynomial in A,

: . 2
MIny = A¥Ine -~ 1, <A~S—“~> (11)

Hence, we evaluate {(v) by means of
Pv) = O+ 1) =l - O} = 23" (12)
=AIny = AInd¢ (13)

and this formula is exact in regions where a single Gaussian
peak dominates the spectrum.

To reduce the effect of noise on the differentiated spec-
trum, a three-point linear digital filter of the form,

(0) = (2520 + 0+ a0 = b+ om0 (1)

W) = 1/2t{c(x + 1) ~ v — 0} — 237 Ip(x) (15)

is used in place of Equation 12 if desired. v is a constant
which determines the filter properties; for v = 1, Equation
15 reduces to Equation 12, and corresponds to no filtering
at all. The best choice for noise suppression is ¥ = %. Ap-

pendix I shows that the result of applying the filter to a
lone Gaussian peak is Equation 4, i.e., the filter causes zero
distortion of a lone Gaussian peak for any choice of ~y.

Problem (ii) above is treated by a least-squares fitting
procedure with orthogonal polynomials at equal intervals,
see, e.g., Kendall and Stewart (8). For this purpose, the
wavelengths at which the equally spaced measurements are
taken are indexed as:

Xj =Xy + 3l j=20,1,2 ... (18)

where Ag is the initial wavelength. Then,
v; = (g + ji)7 (17)

and »; is not at equal increments. If j, be any one of the j-
values, we set:

Xg = Ag + Jol (18)
and obtain:
vi = + (G =gt (19)
If (j — jo)t < Ao, we have approximately,
vy= T = (G g (20)
or
vy = vy + (j — jg)d, (21)
where
Vo = Ag Land 6, = —/x,? (22)

From Equation 21, it can be seen that »; is spaced approxi-
mately equally for points near j, the spacing being 8y. This
will be sufficiently accurate in most cases, provided that
|7 — Jd is not too large. As jo changes, then both vy and &
change. :

The slope and intercept (v) of the transformed spectrum,
Y(v), is estimated by fitting a second degree polynomial to
each successive set of five y-ordinates, centered at jo. The
method of least-squares (8) is applied to the data from the
points with indices jo — 2, jo — 1,jo, Jo + 1, Jo + 2, i.e., ab-
scissas vy — 250, 2 50, Yo, Yo + 5(), Yo + 250. For thatjo, esti-
mates are obtained of the intercept, slope, curvature, and
residual squared error. Estimated values of 4 and S are
obtained from the slope and intercept, and ¢ is estimated
from Equation 5 by averaging over the five data points.
The process is repeated at each j, for which sufficient data
are available. If this least-squares procedure is used, it may
be unnecessary to initially filter the data, using Equation
14, since least-squares is itself a smoothing process. The fil-
ter is useful mostly when graphical methods are employed
to estimate A and ».

If ¢ is assumed to have the behavior:

Uy = Cy + Cily; —vg) + '1,Cy(v; — vp)t (23)

near v, then we obtain estimates of the C’s from

Cy = =27,/(76,%) (24)
Cy = T1/(105,) (25)
and
Cy = (Ty/5) + 2T,/7) (26)
where,
TO = wa“z + d)jo_j + Z.bjo + d)jo-bl + d’j“-rZ (27)
Tro= 2050 = 050+ g+ 20500 (28)

(8) M. G. Kendall and A. Stuart, “The Advanced Theory of Statistics,”” Vol.
2, Hafner, New York, N.Y., 1961, Chapter 28.
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1 1
Ty = 2t /2 ijﬂ-i AL 2N LS

The sum of squared errors is:

2
E? = Z[zp(vﬂ + mo) P — (T/5) —
m==2 .
(T2/10) — (27,%/7)  (30)
The estimated peak parameters are:
S = C1—1/2 — (1050/7v1)1/2 (31)
A = vy —(Cy/Cy) (32)

and the curvature of the plot is Co. In general the curva-
ture, e, will be negligible when

1 ~ 2
e = M@ _ 2 C? 602 . 4iT2*, <<1
- E E - E X

The presence of a portion of a single Gaussian peak is
marked by nearly constant values of A, ¢, and S over sever-
al adjacent values of j, and also by low values of ¢ at the
same points.

In general, it would be advantageous to remove the high-
er, wider peaks first. However, these peaks will have low
values of ¢, and thus appear suppressed when compared
with values of ¥ from smaller, narrower peaks. The method
will do badly if there is no region in which one peak domi-
nates all of the others. Most methods experience difficulty
for the case where no one peak dominates among others in
a region. Thus, in differential methods, an illusion of a
third peak arises when two peaks are resolved under cer-
tain conditions of relative height, width, and peak separa-
tion.

It is essential that any new proposed deconvolution
methods be tested extensively such that the limits for accu-
rate resolution of two overlapping absorption bands are de-
lineated. All problems of band resolution reduce to the two
band problem, and we thus frame the problem in general
terms as that of resolving bands A and B, with positions va
and vg, intensities ¢4 and eg and widths at half-height of
w and wg. The peak separation, va — vp, is defined as A.
Resolution of peaks A and B will be determined (in a gen-
eral sense) by their relative size and the magnitude of A.
Reduction of the six independent variables proceeds
through expressing heights and widths as ratios, thus ea/en
and wa/wg. If v, and ep and wp are fixed and only va, €a,
and w A varied, then the peak separation/band width prop-
erties are determined by the parameter w a/A.

The criterion chosen for accurate resolution was that v
and vp must be at, or within, 1% of A from their actual posi-
tions. When the peak parameters are such that this condi-
tion is obeyed, the resolution is considered successful. In
Figure 1, the limits of conditions for the successful resolu-
tion are plotted as a function of w AJwgp vs. wa/A for given
ea/ep ratios.

The cusp behavior in the region of wa/wp = 1.7, wa/A =
0.6 for ea/eg = 1.0, occurs when the two peaks overlap such
that one peak does not dominate the other completely.
When one peak is much larger than the second, and A is
relatively small, ¢ for the first peak provides a background
upon which the contribution from ¢ for the second may be
recognized. The other extreme, i.e., at large A, shows ¥’s
from each peak separately and clearly. The cusp condition
arises where the “tail” of the first, larger, peak interferes
only partially with the second peak.
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Figure 1. Presentation of the limits of resolution by this method plot-
ted on a logarithmic scale as a function of wa/wg vs. wa/ A for vari-
ous ea/ e ratios

In the region of good resolution, the method successfully resolves two bands
to give both values of vmay accurate 1o less than 1% of A. In the region of
poor resolution, the method gives progressively more inaccurate values for
the band maxima as wa/A increases

APPLICATIONS OF THE COMPUTER
PROGRAM

The program of the method described above presents the
original absorption profile when called as the appropriate
data set number from a backing disc store. The data may
be filtered if required, preferably for a graphical analysis
only. The program then transforms the data using BEqua-
tions 14 and 15 and carries out the least mean squares fit-
ting at each J .

Output may take two forms. The first form is a table of
N, v, &, ¢, A, ¢ S, and e in which peaks are recognized by
constant values of A, E, and S and low values of e.

The second form of output gives the original absorption
profile, ¢, and ¢, the first derivative of log ¢, on a graph
plotter from which linear portions of  may be recognized.
Feedback of the limits of the linear portions of ¢ into the
program will remove the associated peaks. In practice, sev-
eral attempts are required to optimize peak removal and
plotting each set of graphs requires considerable time.

The alternative version of the graphical output presents
the graphs in sequence on a Tektronix 4002A Visual Dis-
play Unit, with a joystick control. In this mode, several at-
tempts may be made to remove peaks within a_short time
and only the optimum peak removal (identification) plot-
ted to give a hard copy.

As an example, the absorption spectrum of iodide dis-
solved in a range of solvents in the far-ultraviolet region
shows a series of overlapping bands (9). The example given
in Figure 2, is that of tetra-n-butyl ammonium iodide in
triethyl phosphate at 253 K (10). The original spectrum is
displayed in Figure 24 as ¢, with normalization 2 X 102,
Figure 2B shows d log A/dv plotted vs. v, Le, ¢, Wwith an
initial linear region encompassed by the crosswire marks. It
is advantageous to look at the linear portion selected, and
Figure 2C shows the section of  which was chosen expand-
ed to full scale. Further selections of  may be attempted

(9) M. F. Fox and E. Hayon, Chem. Phys. Lett., 14, 442 (1972),
(10} M. F. Fox and E. Hayon,'to:be published.
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Figure 2. Visual data display for 5 X 1072 tetra-n-butylammonium
iodide in triethyl phosphate at 253 K

(A) Experimentally obtained absorption spectra, ¢. {B) d log A/dy of (A) plot-
ted vs. v, ($), showing crosswires controlled by joystick. (C) Expansion of
between the crosswires of (B) above showing region of interest for peak re-
moval. (D) ¢, ie., (A) with the first peak removed. This spectrum is then
made an original data, as ¢'. (E) d log A/dv, () of (D) showing linear region
denoted by crosswires. {F) (A) with second peak removed. The remaining
data are then treated as an original data set, ¢”. (G) d log A/dv for (F) giving
the band parameter of the small band at approx. 44,000 cm™!

until a decision to remove the band associated with that
linear portion is made. The spectrum ¢, after optimal re-
moval of the first band, Figure 2D, contains, among others,
a hitherto unsuspected low intensity band. The initial spec-
trum, ¢; and the residual spectrum after the first band has
been removed, ¢’, may then be plotted to give a hard copy.

The residual spectrum ¢’, is then reprocessed to give ¢/
wherein a further linear portion, delineated by the
crosswire marks, is noted as in Figure 2E. Optional removal
of the second large band gives the second residual spec-
trum, ¢” in Figure 2F showing the previously described
small band in isolation. The parameters of the small band
in the region of 44,000 cm™! may be obtained by further
processing of ¢” to obtain 7, Figure 2F. Attempts to re-
move further bands are not successful because the individ-
ual components are too overlapped for aceurate deconvolu-
tion, the “poor resolution” condition of Figure 1 applying.
Further band resolution can only be achieved using an ana-
log curve resolver on a subjective basis, using as few bands
as s consistent with an acceptable solution.

Comparison with other methods shows the method de-
scribed here to give more consistent results for a set of
spectra recorded over a range of temperature than obtained
using the analog curve resolver approach. The advantages
of the digital method being that one peak, and thus a small

part of an overall absorption profile, is dealt with at each
treatment and the parameters are obtained from a least
mean squares approach.

Such considerations are the more advantageous when it
is realized that a spectral width of 25,000 cm™~1 is presented
on the ten-inch scale of the analog resolver.

On the other hand, the method is not as effective as the
iterative least mean squares method of fitting a series of
Gaussian (normal) or log-normal curves to an absorption
profile. The advantages of the iterative method lie with the
absence of differential operators and the small but very ef-
fective adjustments which are made to obtain an accurate
solution.

A program listing, with worked examples, is available
upon request from the authors.

APPENDIX I: DERIVATION OF THE FILTER
EQUATIONS

In this Appendix, we shall show that the filter defined by
Equations 14 and 15 leads to Formula 4 when applied to a

lone Gaussian peak.
For such a peak, Equations 11 and 13 imply

. 2
mo= 1) = A' In €~ 1/2<5 S‘“) (1.1)

We assume that the filter has the three-point, linear, digi-
tal form

Ly = YaTheot T Y T Yt (1.2)
where
Crem = (0 + mt)
( ) m=...—-2,—-1,0,1,2,. ..
Mam = NA + mt
' (1.3)

and y-1, v, v1 are constants to be specified later. If we sub-
stitute the form of 7,, Equation L1, into 1.2, use 1.3 and col-
lect terms, we obtain after some algebra

g, = (g + 2000 + ogf?) In € —
~2—§—2—[o(1 — AN - 2410,(1 — AN) + A%, (1.4)

where

il

o Yit 7t v
Og = vt + Y-
Oy = v — 71

Using Equation 1.4, we obtain after some more algebra
1
ot — Gl = 200 + ) n e -
A
§[-»o + Ao + 6y)] (1.5)
Equations 2, 6, and 7 lead to
12— 4\?
In y(A\) = Iny, = Ine — §<—~3——*>

or
2000 + 8y) Inx, = 2000 + G) Ine ~

(o + 6yf) (A2~ 2401+ AY) (1.6)

Subtracting Equation 1.6 from 1.5 and simplifying the re-
sult, we find
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1

Q, = -27[{:“1 ~ o) — 200 + Ol In x, =
1. - -
TSE lO’(}\ ! - A) + 901A-1(>\ ! - 214)] (17)

We have not Slet chosen the filter constants v, v, and
v1. We now choose them-so that the final form of the filter,

given by @, leads to Equation 4. Equation 1.7 tells us that -

we can do that only by choosing

9020 and o = 1

or
' Y= vq = (1 =y)/2 (1.8)
With this choice we obtain
1 0 AT - A
@ = ’27[5M1 - gx-il = 2x 177x = T
or from Equations 7 and 13
1 1 A

_ v -
Q) = ‘27[5@1 — Gl =2y, = e (1.9)
Also, combining Equations 1.8 and 1.2, we find that
_ 1 -y
6 = c0) = \=5=)[n = 1) +

nx + O] + ) (1.10)

Squation [.10 is the same as Equation 14.
We see from Equations 1.9 and 1.2 that the quantity

@ F %[é(x + 1) =t = D) = 2270 (L1

where {(A + t) and {(A — t) are defined by Equation 1.10,
gives the number (v — A)/S? when applied to a lone Gauss-
ian peak with parameters A and S. This means that we
may interpret @, as the filtered version of Y(v); that is, we
may take @, to be the definition of ¥(v) when the data are
subjected to a three-point, linear digital filter of the form
of Equation 1.10. This leads to Equation 15.

Notice that the filter gives the correct values for (),

namely (v — A)/S?, regardless of the choice of the constant
v. The value of v determines the properties of the filter. If
v = 1, we obtain

cx) = n(x)

W) = gx G+ 1) =00 = OF 2370

For this choice of v, the filter gives the same result, Equa-
tion 12, that is obtained when there is no filter. If the noise
is low-level, uncorrelated, and Gaussian, and if the peak is
sufficiently wide compared to the spacing, it can be shown
that v ~ 1 gives the least variance in the filter output.
However, filtering can cause originally uncorrelated noise
to become correlated and can also cause loss of resolution,
s0 it may be preferable to use a y-value nearer to unity.

The filter (1.10) can be repeated Ntimes according to the
formula

M0 = —Lji[w‘“(x =)+ PO 0]+
‘ Yy D) for n = 1,2,... N (1.12)
20 = n) (1.13)

If {(N) (M) is substituted into

W) = @ = e M0+ ) - e - ) -
2700 (1.14)

the result is again (v — A)/S? for a lone Gaussian peak.
That is, filtering N times according to Equations 1.12 and
1.13, then substituting the final results, { (N) ()\), into
Equation 1.14 causes no distortion of a pure Gaussian peak.
Filtering several times can reduce the noise into a lower
level than filtering only once. However, it is risky to filter
too many times because of resolution loss.
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